A COMPARATIVE STUDY OF AQUEOUS EXTRACT OF
THE GALLS OF QUERCUS INFECTORIA AND LEAVES
OF CASSIA ALATA AGAINST CANDIDA ALBICANS IN
VITRO

S.H.K. Deepthika,1 H.P. Wakkumbura,1 S.L. Wewalwala,1
A.C.D. Ihalagama,2 E.D.C. Karunarathne,3 A.D.H. Sudesh4

1 Department of Kaumarabruthiya and StreeRoga, Gampaha Wickramarachchi
Ayurveda Institute, University of Kelaniya, Sri Lanka. krishanishg@yahoo.com
2 Department of Basic Principles, Gampaha Wickramarachchi Ayurveda Institute,
University of Kelaniya, Sri Lanka.
3 Teaching Hospital Kurunegala, Sri Lanka.
4 Medical Technology Laboratory, Gampaha Wickramarachchi Ayurveda Institute,
Sri Lanka

Key words: antifungal activity, Candida albicans, Cassia alata, Quercus infectoria galls

Introduction
Over three quarter of women have at least one episode of vaginal candidiasis. A few women have frequent recurrences (Monga, A, 2006, p 167). The typical presentation is with itching and soreness of the vagina and vulva, with a curdy, white discharge, which smell yeast, but in some cases there may be itching and redness with thin, watery discharge.

In Ayurvedic texts, various conditions giving rise to white discharge per vaginum have been described. Sarangadharsamhita, Bhattaprukasa, Yogaramakura and commentator Cakrapahini have used the word "Sveta pradura" (Leucorrhoea) for white vaginal discharges. Leucorrhoea is not a disease, but a symptom of so many diseases and the term is loosely used for any type of whitish discharge per vaginum, which are mostly pathological arising from inflammatory conditions of the genital tract (Joshi, N.G, 1999, p.112).

In the recent years, research on medicinal plants has attracted a lot of attention globally. Large body of evidence has accumulated to demonstrate the promising potential of medicinal plants used in various traditional, complementary and alternative systems of treatment of human diseases. (Timothy S.Y and others, 2012) The development of resistance to most antimicrobial agents and the high cost of treatments have necessitated the search for new, safe, efficient and cost effective ways for the management of infectious conditions.

According to traditional medicine system in Sri Lanka and Ayurveda, galls of Quercus infectoria and Cassia alata are very effective herbal materials which have been using against different kinds of fungal
infections. It can be used alone or can be used combined with other drugs and effective in systemic treatment as well as local application. There are some research publications about antimicrobial effect of galls of Quercusinfectoria and Cassia alata.

Materials and Methods:

Plant Materials
The galls of Q. infectoria were purchased from the GampahaSiddhayurveda Pharmaceuticals Pvt. Ltd. and Leaves of Cassia alata were taken from the garden of GampahaWickramarachchi Ayurveda Institute, University of Kelaniya. They were authenticated by the botanists and a voucher specimen of Cassia alata plant was deposited for future reference.

Preparation of aqueous extract
For the preparation of aqueous extract, it was used the standard Ayurvedic method called kvāṭhāraparibhāsha. (Nagodavithana, P., 2001) First the galls of Quercusinfectoria and leaves of Cassia alata were washed with distilled water. Then 60 grams of above materials were put into 02 separate containers and poured 1920 ml of distilled water and boiled it until reduce into 240 ml (Sample A - 1/8) using a heating plate. Then another two samples (Sample B - 1920ml reduced into 120ml [0.5/8] and Sample C - 1920 ml reduced into 60ml [0.25/8]) were made by using the first sample (Sample A) to determine the efficacy depending on the concentration.

Microorganisms
The fungus which was used in this study was Candida albicans, taken from Medical Research Institute, Colombo, Sri Lanka, which was grown and maintained on SabouraudDextrose agar slants.

Preparation of inoculums
Inoculums were prepared by picked five distinct colonies from 24 hours old culture grown on SabouraudDextrose Agar which were incubated at 37°C. Colonies were suspended in 10ml distilled water and vortex the resulting suspension and adjusted the turbidity to 1x10^5 - 1x10^6 cells/ml, using sterilized distilled water.

Preparation of culture media
65.0g of Sabouraud Dextrose Agar (Himedia Laboratories pvt. Ltd, Mumbai, Lot No. 00000040909, Jul 2013) was mixed in 1000ml distilled water and boiled until completely dissolved. Then it was sterilized by autoclaving under a pressure of 15 lbs/inch at 121°C for 15 minutes. Culture media was prepared by pouring the mixtureunder aseptic conditions on to the sterilized petri dishes (diameter - 9 cm) in the same thickness of each.

Spreading the inoculums
0.1ml (100µl) of broth culture was spread evenly by using spreader under aseptic conditions.

Screening of antifungal activity
The well diffusion method was used to assess the anti-fungal effect. Antifungal activity was interpreted from the size of inhibition zones diameter which were measured to the nearest mm from observation of clear zones surrounding the wells. In case, 18 different holes were made on the mediaplate in which 50 µl of the plant extractsand each
extract was assayed in triplicate in order to calculate the mean value. Sterile distilled water 0.05 ml (50 μl in a well) was served as negative control. A serial solution of Fluconazole (Fluconazole USP 50mg, Square Pharmaceuticals Ltd., Bangladesh, Flugal® 50, D.A.R. No. 321-28-62) was prepared in sterile distilled water and adjusted to a final concentration of 2.5 mg ml⁻¹ (125 μg/50 μl in a well) and used as the standard to confirm that the fungus was inhibited by the antifungal drugs (as a positive control).

Results and Discussion

Table 01. - Paired sample test CA-QI

<table>
<thead>
<tr>
<th>Paired Samples Test</th>
<th>Paired Differences</th>
<th>95% Confidence Interval of the Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. Deviation</td>
</tr>
<tr>
<td>Part 1</td>
<td>CA.A-Q1A</td>
<td>1.15470</td>
</tr>
<tr>
<td>Part 2</td>
<td>CA.B-Q1B</td>
<td>1.15470</td>
</tr>
<tr>
<td>Part 3</td>
<td>CA.C-Q1C</td>
<td>1.15470</td>
</tr>
</tbody>
</table>

CA - Cassia alata QI - Quercus infectoria A - Sample A - 1920ml reduced into 240ml [1/0/8] B - Sample B - 1920ml reduced into 120ml [0.5/8] C - Sample C - 1920 ml reduced into 60ml [0.25/8]

The effect of the water extract of the leaves of Cassia alata and Candida albicans at any concentration has shown a statistically significant difference (p<0.05) with the galls of the Quercus infectoria. (Table 01)

Positive control showed 25.67 mm, 27.00 mm and 24.67 mm as Mean Inhibitory Zone diameter in sample A, B and C respectively. Mean Inhibitory Zone diameter of all samples of positive control was 25.66 mm. Distilled water which was used as negative control has shown no response in all samples.
Table 02. - Paired sample test PC - Q1

<table>
<thead>
<tr>
<th>Paired Samples Test</th>
<th>Paired Differences</th>
<th>95% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std Deviation</td>
<td>Std Error Mean</td>
<td>Lower</td>
<td>Upper</td>
</tr>
<tr>
<td>Q1_A-PC_A</td>
<td>-6.33333</td>
<td>.57735</td>
<td>.33333</td>
<td>-7.78755</td>
<td>-4.89912</td>
</tr>
<tr>
<td>Q1_B-PC_B</td>
<td>-7.66667</td>
<td>.57735</td>
<td>.33333</td>
<td>-9.10088</td>
<td>-6.23245</td>
</tr>
<tr>
<td>Q1_C-PC_C</td>
<td>-2.33333</td>
<td>1.52753</td>
<td>.88192</td>
<td>-6.12792</td>
<td>1.46125</td>
</tr>
</tbody>
</table>

Q1 - *Quercus infectoria* PC - Positive Control
A - Sample A - 1920ml reduced into 240ml [1.0/8] B - Sample B - 1920ml reduced into 120ml [0.5/8]
C - Sample C - 1920 ml reduced into 60ml [0.25/8]

The water extract of the galls of *Quercus infectoria* of sample A and B have shown a statistically significant difference (p<0.05) with the positive control (Flucanazole USP 125μg/50μl). But in the sample C (1920 ml reduced into 60ml [0.25/8]), it has not shown a significant difference with the positive control. (Table 02)

Table 03. - Paired sample test PC - CA

CA - *Cassia alata* PC - Positive Control
A - Sample A - 1920ml reduced into 240ml [1.0/8] B - Sample B - 1920ml reduced into 120ml [0.5/8]
C - Sample C - 1920 ml reduced into 60ml [0.25/8]
The effect of the water extract of the leaves of *Cassia alata* on *Candida albicans* at any concentration has shown a statistically significant difference \((p < 0.05) \) with the positive control. (Table 03)

Galls of *Quercus infectoria* and leaves of *Cassia alata* have been proven for anti-fungal activity including *Candida albicans* in many previous studies. Galls of *Quercus infectoria* have been using successfully against clinically diagnosed vulvovaginal candidiasis in general practices in Ayurveda and leaves of *Cassia alata* also have been using against fungal infections. According to the previous studies though *Cassia alata* has been proven for its anti-fungaleffect, in this study it gave no significant response. It can be assumed that the concentration of the samples were not enough to give a significant response at expected level against *Candida albicans*.

Conclusion

From the above results and discussion it can be concluded that the aqueous extract of galls of *Quercus infectoria* has shown anti-fungal effect against *Candida albicans* without a significant difference \((p > 0.05) \) while comparing with the tested concentration of Fluconazole USP \((12.5 \mu g/50 \mu l) \).

The aqueous extract of the leaves of *Cassia alata* did not give any significant response against *Candida albicans* at the tested concentrations.

Acknowledgement: The authors like to convey their gratitude to Dr. D.L. Jayaratne, senior lecturer, University of Kelaniya and to Dr. W.M.B. Weerasooriya, senior lecturer, Gampaha Wickramarachchi Ayurveda Institute for their support in the completion of this work.

References

Joshi, N.G. (1999), *Ayurveda concepts in Gynecology*, Chaukamba Sanskrit pratishtthan, Jawahar Nagar, Delhi, India.

